Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards “GC” Rich Codons
نویسندگان
چکیده
Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen "core" dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression.
منابع مشابه
Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data
Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nu...
متن کاملThe Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of ...
متن کاملAnalysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending
As one of the most ancient tree species, the codon usage pattern analysis of Ginkgo biloba is a useful way to understand its evolutionary and genetic mechanisms. Several studies have been conducted on angiosperms, but seldom on gymnosperms. Based on RNA-Seq data of the G. biloba transcriptome, amount to 17,579 unigenes longer than 300 bp were selected and analyzed from 68,547 candidates. The co...
متن کاملReverse Polarization in Amino acid and Nucleotide Substitution Patterns Between Human–Mouse Orthologs of Two Compositional Extrema
Genome-wide analysis of sequence divergence patterns in 12,024 human-mouse orthologous pairs reveals, for the first time, that the trends in nucleotide and amino acid substitutions in orthologs of high and low GC composition are highly asymmetric and polarized to opposite directions. The entire dataset has been divided into three groups on the basis of the GC content at third codon sites of hum...
متن کاملFactors influencing the synonymous codon and amino acid usage bias in AT-rich Pseudomonas aeruginosa phage PhiKZ.
To reveal how the AT-rich genome of bacteriophage PhiKZ has been shaped in order to carry out its growth in the GC-rich host Pseudomonas aeruginosa, synonymous codon and amino acid usage bias of PhiKZ was investigated and the data were compared with that of P. aeruginosa. It was found that synonymous codon and amino acid usage of PhiKZ was distinct from that of P. aeruginosa. In contrast to P. ...
متن کامل